Intel® Atom™ Microarchitecture for Tablets and Smartphones

Shreekant (Ticky) Thakkar
Chief Platform Architect, Intel Fellow
Intel Mobile and Communications Group

AAF 2012
Agenda

• Medfield / Clovertrail Overview - Intel® Platform for Smartphones and Tablets
• Power & Battery Life
• Platform Performance
• Next Generation Platform
• Q&A
Medfield Platform Objectives and Innovations

Intel’s Purpose-built Platform for Smartphones & Tablets

• Leverage Intel® Architecture and Process Technology – 32nm SoC
• Drive Low Power Standby and Active Operation – Fine grain Power Management, LP IA Audio, PnP Tuning
• Fit in Aggressive Smartphone & Tablet Form Factors – Xolo*, Orange*, Motorola, Lenovo, Samsung, Acer ...
• Single/Multi-Thread CPU Performance – Burst Mode, Intel® Hyper-Threading Technology, 2GHz operation; Dual core on Tablets
• Advanced Media Performance (Graphics, Video, Camera) – HD 1080p Decode, Encode, Fast Camera with burst mode

*Other names and brands may be claimed as the property of others.
Medfield Block Diagram

SOC with Hi-k 32nm Process Technology

- CPU
- L2 $ 512KB
- LP-DDR2 Ctrl

- 2D/3D Graphics
- Video Decode 1080p30
- Video Image Enhance
- Display Ctrl 3 Pipes

- Image Signal Processor Programmable
- Low Power Audio Engine
- Security Programmable Execution Environment & Crypto Engine

- I/O
- MIPI-HSI SPI UART ULPI
- Video Encode 1080p30

- I/O
- LPDDR2 eMMC MIPI-DSI HDMI 1.3a MIPI-CSI UART

- TI WiFi & BT GPS
- SIM Card
- XMM™ 6260 HSPA+ Modem
- USB OTG 2.0
- MSIC VRs, Audio CODEC Display Support

- LPDDR2
- eMMC
- SD/MMC
- Internal Disp
- PMU
- HDMI Display
- Primary Camera: 8MP; 15fps, 1080p
- Secondary Camera: 1.3MP, 1080p

Medfield = Intel® Platform for Smartphones and Tablets

AAF 2012
Benefits of Intel Architecture

- Intel Architecture (IA) implemented with multiple microarchitectures to deliver great performance at low power
- Intel Architecture (IA) is one of the most widely supported Computing platforms – significant tools and eco-system advantage
- Intel maintains a competitive position in multiple processor and multi-core architecture – running on leading operating systems
- Intel Technology – fast generational innovations – provides power, performance and integration advantages for SoC’s

Intel Architecture enables great Smartphone and Tablet Platforms
Penwell SoC Package Size

- **Memory Peak Bandwidth**
 - 6.4GB/s @ 800MT/s
 - Channels and ranks

- **Dual 32 bit channels**
 - Supports 1 or 2 ranks per channel

- **Memory Size and Density**
 - Supports total memory size of 128MB, 256MB, 512MB and 1GB per channel
 - Supports 1Gb, 2Gb and 4Gb chip densities

- **Other Features**
 - Aggressive power management to reduce power consumption
 - Proactive page closing policies to close unused pages
 - Supports different physical mappings of bank addresses to optimize for performance

Package-on-Package (POP)
- 12 x 12 mm PoP FCMB4 - 32nm
- Non PoP SoC < 0.8 mm
- PoP z height < 1.4mm
- OEM/ODM can solder up to 2 GB of LPDDR2 memory on top of SOC
Low Power Platform Progression

<table>
<thead>
<tr>
<th></th>
<th>Moorestown (45nm)</th>
<th>Medfield (32nm)</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Board size</td>
<td>5,000mm²</td>
<td>4,150mm²</td>
<td>↓ 17%</td>
</tr>
<tr>
<td>Standby power</td>
<td>21mW</td>
<td>14mW</td>
<td>↓ 33%</td>
</tr>
<tr>
<td>Browsing power</td>
<td>1.2W</td>
<td>0.85W</td>
<td>↓ 29%</td>
</tr>
<tr>
<td>Video</td>
<td>+ 720p encode</td>
<td>+ 1080p encode</td>
<td></td>
</tr>
<tr>
<td>Camera</td>
<td>5 mega-pixel</td>
<td>up to 16 mega-pixel</td>
<td></td>
</tr>
<tr>
<td>Graphics</td>
<td>800 MPPS</td>
<td>2,000 MPPS</td>
<td>↑ 250%</td>
</tr>
</tbody>
</table>
Designed for Tablets - Z2760

(SoC - Intel® Atom™ Processor)

- Dual Core CPU w/Intel® HT Technology
- 2X L2 Cache 512KB
- LPDDR2 Control
- Video Encode and Decode (1080p)
- Image Signal Processor
- Security

I/O:
- HDMI
- USB 2.0
- SDIO 2.0
- eMMC
- I2C

I/O:
- SPI
- MIPI-DSI
- MIPI-CSI
- MIPI-HSI
- UART
- HS-UART

*Intel® Hyper-Threading Technology (Intel® HT Technology)
POWER &
BATTERY LIFE
Power Breakthroughs Enabled By...

PROCESS LEADERSHIP

Intel® Hi-k 32nm Low Power (LP) SoC Process

ARCHITECTURAL ENHANCEMENTS

New Intel® Standby SoC Power States

Next Gen Intel® OS Power Management

Handheld I/O

Enhanced Intel® SpeedStep® Technology

Hardware Accelerators

DESIGN TECHNIQUES

Distributed Power Gating

Ultra Low Power (uLP) ATOM™ core enhancements

Dedicated Mixed Signal IC (MSIC)
The OS is responsible for identifying when the processor needs to be in a certain C state and requests the processor to enter that state.
New Platform Level: “S0iX” Ultra Low Power States

S0i1
- Used during idle (e.g. home screen, web browsing)
- Ultra Low Power: \(\text{mW} \)
- Entry-Exit Latency: \(\mu\text{s} \)

S0i3 / S3
- Used when NOT interacting with the device (e.g. standby mode)
- SoC power: \(\mu\text{W} \)
- Entry-Exit Latency: \(\text{ms} \)

Achieves Ultra Low Power States with Best-in-Class Latency
Intel® OS Power Management (OSPM)

- Pervasive Power Management
 - Integrated PMU
 - Dedicated Power Delivery IC
 - Active management through HW, FW, SW

- Software-Directed
 - Operating system power management
 - Manages all hardware capabilities

- Fine Grain Power Management
 - 13 rails for IO & logic voltages
 - 45 Power islands for sub-systems
 - Aggressive power and clock gating
 - Integrated clocks and VR power down

OSPM Directs Entire Platform to Lowest Power State
Active system looks like this:

- **Security Engine**
- **Power Manager**
- **Low Power Audio**
- **CPU w/ 512KB L2$**
- **2D/3D Graphics**
- **Image Signal Processor**
- **Video Encode/Decode (1080p30)**
- **Display Controller (3 pipes)**

CPU Active
CPU Off

CPU is now off!

CPU w/512KB L2$
S0i1 System State

- Security Engine
- Power Manager
- Low Power Audio
- Storage
- CPU w/512KB L2
- 2D/3D Graphics
- Image Signal Processor
- Video Encode/Decode (1080p30)
- Display Controller (3 pipes)

S0i1 - low activity
S0i3/S3 System State

Standby State – just waiting for wakes
Penwell CPU Dynamic Range

Wide Dynamic Range & Fast Exit Latencies = Big Energy Savings

Core Freq = 100MHz
Power: ~50mW

Core Freq = 600MHz
Power: ~175mW

Core Freq = 1.3 GHz
Power: ~500mW

Core Freq up to 2.0 GHz
for bursty workloads
Power: ~750mW

Core/L2$ Power Is ~Zero
CPU State Saved in SRAM <100 uS Exit Latency

Fine-grained power management through dynamic voltage & frequency scaling

Power assumptions: Tj=70C. Steady State Worst Case ST App Power Projected on Intel 32nm process

Intel

Fixed Workload

Bursty Workload

Competition

HFM

Ultra-LFM

Burst

IMPACT
Battery Benchmarks

Battery Life - Browsing

*Other names and brands may be claimed as the property of others.
At least based on this data, it looks like Intel is the closest to offering a real competitor to Apple’s own platform from a power efficiency standpoint. We’re a couple quarters away from seeing the next generation of mobile SoCs so anything can happen next round, but I can’t stress enough that the x86 power myth has been busted at this point.

- Oct 16, 2012
The x86 power myth is finally busted. While the X900 doesn’t lead in battery life, it’s competitive with the Galaxy S 2 and Galaxy Nexus. In terms of power efficiency, the phone is distinctly middle of the road - competitive with many of the OMAP 4 based devices on the market today. If you’ve been expecting the first x86 smartphone to end up at the bottom of every battery life chart, you’ll be sorely disappointed.

This was another area of strength for Intel. In our standard battery test, which cycles through websites and videos with the screen set to 60 percent brightness, the RAZR M lasted seven hours and 22 minutes, while the RAZR i lasted a full eight hours and 42 minutes. Where the phones truly differ, however, is in standby time. The RAZR i managed to last 72 hours of regular use, including pushing email to two separate accounts, with 12 percent of its battery remaining. In contrast, the RAZR M will get you a full day’s normal usage, but not much more. It’s clear that Intel’s chip is far more frugal with power than the dual-core Snapdragon S4.
PERFORMANCE
Intel® Burst Performance Technology

- Takes advantage of thermal headroom (up to $T_{j\text{-max}}$ or T_{skin}) to deliver highest frequencies

- Races to Idle once “burst mode” performance is not needed

“Performance On-Demand” without Impacting Thermal Design
Browser_R Results Summary

<table>
<thead>
<tr>
<th></th>
<th>P0</th>
<th>600 MHz</th>
<th>900 MHz</th>
<th>1500 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>1x</td>
<td>1.5x</td>
<td>2.5x</td>
<td></td>
</tr>
<tr>
<td>Performance</td>
<td>1x</td>
<td>1.41x</td>
<td>2.24x</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>1x</td>
<td>1.29x</td>
<td>1.81x</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>1x</td>
<td>0.92x</td>
<td>0.81x</td>
<td></td>
</tr>
</tbody>
</table>
Intel® Hyper-Threading Technology Improves Efficiency

- Adding threads to an in-order micro-architecture improves perf/power efficiency, perf/area efficiency and performance scalability.
- Non-stall based pipeline designed to switch threads every clock cycle.

Performance

- EEMBC (2 copies) SPECint2000_rate
 - +36%
 - +39%

Power

- EEMBC (2 copies) SPECint2000_rate
 - +19%
 - +17%

Data from Bonnell-Silverthorne silicon measurements. Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.
Benefits of Intel® Hyper-Threading Technology

Execution Resource Utilization

First Thread/Task

Second Thread/Task

Both Threads/Tasks without Intel® Hyper-Threading Technology

Both Threads/Tasks with Intel Hyper-Threading Technology

Time

Time saved
Performance Benchmarks

“With the Xolo X900, Intel has officially put the ARM manufacturers on notice....it’s downright impressive”

April 25, 2012

*Other names and brands may be claimed as the property of others.
Google Octane Benchmark v1

- **Apple iPhone 4S**: 757
- **Motorola Droid RAZR M (Snapdragon S4)**: 1098
- **HTC One X (Tegra 3)**: 1131
- **HTC One X (Snapdragon S4)**: 1280
- **Apple iPhone 5**: 1672
- **Motorola RAZR (Atom)**: 2048

Google V8 Benchmark - Version 7

- **Apple iPhone 4S**: 718
- **Motorola Droid RAZR M (Snapdragon S4)**: 1162
- **HTC One X (Tegra 3)**: 1162
- **HTC One X (Snapdragon S4)**: 1222
- **Apple iPhone 5**: 1507
- **Motorola RAZR (Atom)**: 2209

*Motorola RAZR (Atom): 14455.3
Motorola Droid 2: 10618.6
HTC One X (Snapdragon S4): 22171.3

Other names and brands may be claimed as the property of others.
Z2760 Performance - TouchXPRT 2013

<table>
<thead>
<tr>
<th></th>
<th>Photo Enhance</th>
<th>Photo Exper</th>
<th>Video Transcode</th>
<th>MP2 Transcode</th>
<th>Photo Slideshow Creation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel Atom Z2780</td>
<td>210.83</td>
<td>75.93</td>
<td>53.91</td>
<td>98.66</td>
<td>85.81</td>
</tr>
<tr>
<td>MS Surface (Tegra 3 1.3GHz)</td>
<td>306.12</td>
<td>116.36</td>
<td>87.27</td>
<td>160.99</td>
<td>125.06</td>
</tr>
<tr>
<td>Asus Vivo Tab RT (Tegra 3 1.3GHz)</td>
<td>312.14</td>
<td>109.89</td>
<td>89.69</td>
<td>155.84</td>
<td>122.65</td>
</tr>
</tbody>
</table>

On the user experience side alone, the Clover Trail tablet is noticeably quicker than Surface…

October 23, 2012

Other names and brands may be claimed as the property of others.
Smartphones and Tablets
Medfield

Other brands and names are the property of their respective owners.
Rich Portfolio of Form Factors

Intel® Atom™ Processor-based tablets/convertibles for Windows® 8

A few systems that have already been announced:

- Lenovo* Think Pad 2
- Asus* Vivo Tab
- Samsung* ATIV Smart PC†

And More to Come... Great Choices for Work and Play
Intel® Atom™ Processor Tablet Platform

Clover Trail

Medfield
Intel® Atom™ Z2610
Up to 1.6 GHz (Burst)

Clover Trail
Intel® Atom™ Processor
Up to 1.8 GHz (Burst)
Dual Core w/ 2X CPU Performance

Bay Trail
New microarchitecture
22nm
Intel® Atom™ Processor Smartphone Platform
Clover Trail+

Medfield
Intel® Atom™ Z2460
Up to 2.0 GHz (Burst) Processor

Clover Trail+
Intel® Atom™ Z2580
Dual Core w/ 2X CPU & Graphics Performance

Next Generation...
New microarchitecture 22nm
Summary

• Intel® Architecture using Intel® Burst Technology and Intel Hyper-Threading Technology delivers high performance on demand with energy saving.

• OS driven fine-grain power management enables Medfield & Clovertrail platforms to deliver competitive battery Life.

• Intel’s 32nm process technology enables us to integrate and deliver high performance CPU and Media in Smartphone and Tablets.

• Next Generation Platforms will continue to leverage Intel Process Technology and Microarchitecture to deliver best user experience.
Backup
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A “Mission Critical Application” is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL’S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS’ FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined”. Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. Go to: http://www.intel.com/products/processor_number.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Medfield, Clover Trail, Cloverview and other code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release. Customers, licensees and other third parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any such use of Intel’s internal code names is at the sole risk of the user

Intel, Ultrabook, Atom, Atom inside and the Intel logo are trademarks of Intel Corporation in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright ©2012 Intel Corporation.
Legal Disclaimer

• Enhanced Intel SpeedStep® Technology - See the Processor Spec Finder at http://ark.intel.com or contact your Intel representative for more information.

• Intel® Hyper-Threading Technology (Intel® HT Technology) is available on select Intel® Core™ processors. Requires an Intel® HT Technology-enabled system. Consult your PC manufacturer. Performance will vary depending on the specific hardware and software used. For more information including details on which processors support Intel HT Technology, visit http://www.intel.com/info/hyperthreading.

• Ultrabook™ Touch/Convertibility: Touch and convertibility may not be available on all models. Consult your Ultrabook™ manufacturer. For more information and details, visit http://www.intel.com/ultrabook.

• Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark* and MobileMark*, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance.
Risk Factors

The above statements and any others in this document that refer to plans and expectations for the second quarter, the year and the future are forward-looking statements that involve a number of risks and uncertainties. Words such as "anticipates," "expects," "intends," "plans," "believes," "seeks," "estimates," "may," "will," "should" and their variations identify forward-looking statements. Statements that refer to or are based on projections, uncertain events or assumptions also identify forward-looking statements. Many factors could affect Intel's actual results, and variances from Intel's current expectations regarding such factors could cause actual results to differ materially from those expressed in these forward-looking statements. Intel presently considers the following to be the important factors that could cause actual results to differ materially from the company's expectations. Demand could be different from Intel's expectations due to factors including changes in business and economic conditions, including supply constraints and other disruptions affecting customers; customer acceptance of Intel's and competitors' products; changes in customer order patterns including order cancellations; and changes in the level of inventory at customers. Uncertainty in global economic and financial conditions poses a risk that consumers and businesses may defer purchases in response to negative financial events, which could negatively affect product demand and other related matters. Intel operates in intensely competitive industries that are characterized by a high percentage of costs that are fixed or difficult to reduce in the short term and product demand that is highly variable and difficult to forecast. Revenue and the gross margin percentage are affected by the timing of Intel product introductions and the demand for and market acceptance of Intel's products; actions taken by Intel's competitors, including product offerings and introductions, marketing programs and pricing pressures and Intel's response to such actions; and Intel's ability to respond quickly to technological developments and to incorporate new features into its products. Intel is in the process of transitioning to its next generation of products on 22nm process technology, and there could be execution and timing issues associated with these changes, including products defects and errata and lower than anticipated manufacturing yields. The gross margin percentage could vary significantly from expectations based on capacity utilization; variations in inventory valuation, including variations related to the timing of qualifying products for sale; changes in revenue levels; segment product mix; the timing and execution of the manufacturing ramp and associated costs; start-up costs; excess or obsolete inventory; changes in unit costs; defects or disruptions in the supply of materials or resources; product manufacturing quality/yields; and impairments of long-lived assets, including manufacturing, assembly/test and intangible assets. The majority of Intel's non-marketable equity investment portfolio balance is concentrated in companies in the flash memory market segment, and declines in this market segment or changes in management's plans with respect to Intel's investments in this market segment could result in significant impairment charges, impacting restructuring charges as well as gains/losses on equity investments and interest and other. Intel's results could be affected by adverse economic, social, political and physical/infrastructure conditions in countries where Intel, its customers or its suppliers operate, including military conflict and other security risks, natural disasters, infrastructure disruptions, health concerns and fluctuations in currency exchange rates. Expenses, particularly certain marketing and compensation expenses, as well as restructuring and asset impairment charges, vary depending on the level of demand for Intel's products and the level of revenue and profits. Intel's results could be affected by the timing of closing of acquisitions and divestitures. Intel's results could be affected by adverse effects associated with product defects and errata (deviations from published specifications), by litigation or regulatory matters involving intellectual property, stockholder, consumer, antitrust, disclosure and other issues, such as the litigation and regulatory matters described in Intel's SEC reports. An unfavorable ruling could include monetary damages or an injunction prohibiting Intel from manufacturing or selling one or more products, precluding particular business practices, impacting Intel's ability to design its products, or requiring other remedies such as compulsory licensing of intellectual property. A detailed discussion of these and other factors that could affect Intel's results is included in Intel's SEC filings, including the company's most recent Form 10-Q, Form 10-K and earnings release.